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We discuss the application of a recently introduced numerical linked-cluster �NLC� algorithm to strongly
correlated itinerant models. In particular, we present a study of thermodynamic observables: chemical poten-
tial, entropy, specific heat, and uniform susceptibility for the t-J model on the square lattice, with J / t=0.5 and
0.3. Our NLC results are compared with those obtained from high-temperature expansions �HTE� and the
finite-temperature Lanczos method �FTLM�. We show that there is a sizeable window in temperature where
NLC results converge without extrapolations whereas HTE diverges. Upon extrapolations, the overall agree-
ment between NLC, HTE, and FTLM is excellent in some cases down to 0.25t. At intermediate temperatures
NLC results are better controlled than other methods, making it easier to judge the convergence and numerical
accuracy of the method.
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I. INTRODUCTION

In a recent paper �1� we introduced a linked-cluster algo-
rithm, which we called the numerical linked-cluster �NLC�
algorithm, that allows one to obtain temperature-dependent
properties of quantum lattice models in the thermodynamic
limit from the exact diagonalization of small clusters. A de-
tailed exposition of NLC and its application to quantum spin
models on square, triangular, and kagomé lattices have been
presented in Ref. �2�. There we have shown that for many
spin models and thermodynamic quantities NLC results can
be substantially more accurate than HTE and exact diagonal-
ization �ED�.

In this paper we discuss how to use NLC to calculate
properties of strongly correlated itinerant models. In particu-
lar, we study the thermodynamics of the planar t-J model on
the square lattice. This model was introduced by Anderson
and others �3,4� as a means to understanding the microscopic
mechanism for high-temperature superconductivity �5,6�. It
is one of the simplest models that allows one to study the
interplay between itinerancy of electrons and their spin fluc-
tuations, possibly leading to superconductivity and many
other exotic quantum phases �7�.

In spite of its simplicity, understanding finite-temperature
thermodynamic properties of the t-J model has proven to be
a very challenging task �8�. Quantum Monte Carlo simula-
tions suffer from severe sign problems, which become a ma-
jor difficulty at low temperatures. The two general ap-
proaches that have been commonly used to study this model
are ED and HTE. ED studies in which one fully diagonalizes
the t-J Hamiltonian are difficult since they can only be done
for very small systems �9,10�, as a consequence of which
finite size effects are very large. A more efficient approach to
this problem is the finite-temperature Lanczos method
�FTLM�, which has been developed by Jaklič and Prelovšek
�JP� �11�. Within this approach the full thermodynamic trace
is reduced by randomly sampling the eigenstates of the
Hamiltonian. This allows one to study larger systems sizes in
an unbiased way, but still finite size effects become relevant
as the temperature is lowered.

In order to obtain results in the thermodynamic limit one
can use high-temperature expansions �HTE� �12–15�. Within
this method the properties of the system are expanded in
powers of the inverse temperature � �16,17�. These expan-
sions, carried out to order �N, where N is of order 10, pro-
vide accurate numerical results within the radius of conver-
gence of the series. The temperature scale where HTE
converges can be rather high for t-J models. It is typically set
by t when t�J. Beyond the region of convergence, series
extrapolation methods �18� allow one to calculate thermody-
namic properties, but their reliability remains uncertain. Be-
cause the region of convergence is small in inverse tempera-
ture, extrapolations even to temperatures of order J are more
sensitive to the choice of the extrapolation method and vari-
ables and hence less reliable than for purely spin models.

Here, we study thermodynamic properties of the t-J
model using NLC. The basic idea is to show with examples
the advantages and disadvantages of NLC as compared with
FTLM and HTE, and the region of temperatures that within
NLC can be accessed for the different observables of inter-
est. The exposition is organized as follows. In Sec. II we
introduce the t-J Hamiltonian and discuss the basic ideas of
the NLC calculation for itinerant models. The calculations
must be done in the grand canonical ensemble and the
change from chemical potential to density must be done nu-
merically. We will show that this works quite well. In the
remaining sections we present results for the entropy �Sec.
III�, the uniform susceptibility �Sec. IV�, and the specific
heat �Sec. V�. The conclusions are presented in Sec. VI

II. GRAND CANONICAL NLC

The t-J Hamiltonian can be written as

H = − t �
�i,j�,s

P�cis
† cj� + H.c.�P + J�

�i,j�
�Si · S j −

1

4
ninj	 ,

�1�
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where cis
† and cis are the creation and annihilation operators

for an electron with spin s= ↑ ,↓ on a site i, ni=�scis
† cis is the

density operator, P is a projection operator to ensure no hop-
ping produces doubly occupied sites, i.e., we assume that the
local Coulomb repulsion is very large such that two electrons
�with antiparallel spin� cannot be on the same lattice site, and

Si =
1

2�
ss�

cis
† �ss�cis� �2�

is the local spin operator �� are the Pauli matrices�. The
sums �i , j� in Eq. �1� run over nearest-neighbor sites.

As in the case of spin systems �1,2�, the fundamental basis
of our numerical linked cluster expansion, for some exten-
sive property P of an infinite lattice L, is the relation �16,17�

P�L�/N = �
c

L�c� � WP�c� , �3�

where the left hand side is the value of the property P per
lattice site in the thermodynamic limit. On the right hand
side L�c� is the so-called lattice constant that is the number
of embeddings of the cluster c, per lattice site, in the lattice
L. WP�c� is the weight of the cluster c for the property P.
The latter is defined recursively by the principle of inclusion
and exclusion �16�

WP�c� = P�c� − �
s�c

WP�s� , �4�

where P�c� is the property P calculated for the finite cluster
c. The sum on s runs over all subclusters of c. The basic idea
of NLC is to calculate P and WP at any temperature by
means of an exact diagonalization of each cluster c.

For itinerant models, it is desirable to control the density
in the thermodynamic limit. Within NLC this is achieved by
working in the grand canonical ensemble, i.e., by introducing
a chemical potential. Hence, in this case

P�c� =
1

Zc
Tr
P exp�− �H − ��

i

ni	� T�
c

. �5�

In Eq. �5�, � denotes the chemical potential, T is the tem-
perature of the system �we have set the Boltzmann constant
kB to be unity�, and Zc is the partition function in each cluster
c

Zc = Tr
exp�− �H − ��
i

ni	� T�
c

. �6�

Notice that in Eq. �5� and �6�, Tr denotes the grand canonical
trace, i.e., we fully diagonalize the t-J Hamiltonian for all
possible fillings in each cluster. This, together with the fact
that the Hilbert space is larger �three states per site� for the
t-J model, when compared with 1/2-spin models �with only
two states per site� studied in Refs. �1,2�, reduces the size of
the largest clusters we can consider here. All results pre-
sented in this paper correspond to the site expansion of the
square lattice �see Ref. �2� for details� with all clusters up to
10 sites. At zero doping, i.e., the Heisenberg model, we
present NLC results considering all clusters with up to 13
sites �1,2�. In addition, throughout this work we examine two

values of the parameter J / t: J / t=0.5 as in the HTE studies of
Ref. �13�, and J / t=0.3 as in the FTLM studies of Refs.
�8,11�, to both of which we compare some of our results.

For itinerant models, the first quantity one needs to evalu-
ate within NLC is the density. This is because one is, in
general, interested in the behavior of thermodynamic observ-
ables as a function of the temperature at a fixed density or as
a function of the density �or hole doping� at a fixed tempera-
ture. In Fig. 1 we plot the hole density as a function of the
temperature for different chemical potentials. The results of
the bare NLC sums �3� exhibit a clear feature. They converge
to lower temperatures as the density approaches 1.

In order to access lower temperatures we use the sequence
extrapolation techniques detailed in Ref. �2�. Results of
Wynn extrapolations for the density after three and four
cycles of improvement are also depicted in Fig. 1. For the
lowest chemical potential ��=0� one can see that series ex-
trapolations allow one to extend the region of convergence of
the density from T / t�0.75 to T / t�0.2.

Once we have performed the extrapolations for the den-
sity, we numerically invert the dependence of any observable
from �� ,T� to �n ,T�. As a first example we show in Fig. 2
the dependence of the chemical potential on the temperature
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FIG. 1. �Color online� Hole density as a function of temperature
for different chemical potentials �from top to bottom �
=0,0.2, . . . ,2.4�, and J / t=0.5. For each value of the chemical po-
tential we have plotted results of the bare NLC sums up to 9 and 10
sites �thin continuous lines� and results of Wynn extrapolations after
three and four cycles of improvement �see Ref. �2� for details�.
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FIG. 2. �Color online� Chemical potential as a function
of temperature for different densities �from bottom to top
n=0.7,0.72, . . . ,0.98�, and J / t=0.5. For each value of the density
we have plotted results of Wynn extrapolations after three and four
cycles of improvement.
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when the density is held fixed. As can be seen, it is possible
to follow the chemical potential curves at constant density to
rather low temperatures T / t�0.1.

An analysis of the results depicted in Fig. 2 for the lowest
temperatures suggests that the dependence of � on the tem-
perature is roughly linear

��T� = ��T = 0� + AT . �7�

This is in agreement with the results obtained by JP �8� using
FTLM, and departs from the T2 dependence expected of a
Fermi liquid. In addition, there is a change in the slope A as
the density is shifted. For J / t=0.5 we find that the slope A
changes sign when n��0.81. This can be better seen in Fig.
3, where we plot the hole density vs the chemical potential at
fixed temperatures. There, one can see that for 1−n��0.19
the different curves cross each other. For 1−n��0.19 our
NLC results are well converged at all temperatures T / t
�0.15. Small departures between Wynn extrapolations after
three and four cycles of improvement are only apparent for
the lowest temperatures and highest hole concentrations.

We have also performed a similar study for J / t=0.3. In
this case we have obtained, in close agreement with JP �8�,
that the change of slope in A occurs for n��0.86.

III. ENTROPY

Once one has numerically inverted the dependence �� ,T�
to �n ,T� it is possible to study the behavior of observables of
interest as a function of the temperature at a fixed density. In
this section we consider the entropy per lattice site

S =
1

N
�ln Z +

�H − ��
i

ni�

T
	 , �8�

where the term proportional to the chemical potential on the
right hand side, not present in our calculations for spin sys-
tems, is needed when dealing with the grand canonical en-
semble. N is the number of lattice sites.

In Fig. 4, we plot the entropy vs temperature for different
values of the density after three and four cycles of improve-

ments using Wynn’s algorithm. As with the chemical poten-
tial, the NLC convergence for S improves as the density
approaches 1. For all the densities plotted in Fig. 4 we get
good convergence for T / t	0.25.

Now we discuss the dependence of the entropy on density
when the temperature is held fixed. This is shown in Fig. 5.
The entropy exhibits a very broad maximum that slowly
shifts towards lower hole densities as the temperature is in-
creased. These results are in qualitative agreement with ex-
perimental measurements that have found the entropy to be
maximum around 1−n=0.22 at a temperature T / t=0.07
�lower than the ones we have calculated here� �19�.

To conclude this section on the entropy we compare in
Fig. 6 our NLC results with those obtained by JP �8� using
FTLM in clusters with 20 lattice sites and J / t=0.3. At zero
doping �Heisenberg model�, the agreement between NLC
�with clusters up to 13 sites �1�� and FTLM is remarkable
down to T / t�0.25. Below that temperature, finite size ef-
fects start to be apparent as FTLM results marginally depart
from the ones obtained using NLC �see also the discussion in
Ref. �1� on the entropy of the Heisenberg model on the
square lattice�.

Within FTLM, finite size effects for the entropy, at a
given temperature, increase when holes are added to the an-
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FIG. 3. �Color online� Hole density vs chemical potential for
different temperatures �below the crossing point from bottom to top
T / t=0.15,0.20, . . . ,0.5�, and J / t=0.5. For each value of the tem-
perature we have plotted results of Wynn extrapolations after three
and four cycles of improvement.
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FIG. 4. �Color online� Entropy as a function of temperature for
different densities and J / t=0.5. For each value of the density we
have plotted results of Wynn extrapolations after three and four
cycles of improvement.
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FIG. 5. �Color online� Entropy as a function of the density for
different temperatures �from bottom to top T / t=0.25,0.20, . . . ,0.6�
and J / t=0.5. For each value of the temperature we have plotted
results of Wynn extrapolations after three and four cycles of
improvement.
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tiferromagnet. This can be understood within the analysis
presented in Ref. �8�. There it was shown that the tempera-
ture at which finite size effects start to become relevant in-
creases with doping 1−n
0.15, for the system sizes consid-
ered in that work. In particular, for n=0.7 �the worst case for
FTLM� our NLC results for S are slightly different from the
ones in Ref. �8� for all temperatures in Fig. 6.

IV. UNIFORM SUSCEPTIBILITY

We study in this section another thermodynamic quantity
of much experimental interest, the uniform susceptibility

� =
��Stot

z �2�
NT

. �9�

In Fig. 7 we show results for the uniform susceptibility as
a function of temperature for different densities. For the
Heisenberg model, the results of our Wynn extrapolations for
� are well converged down to T /J�0.3. They allow one to
resolve the peak in � that occurs around T /J�1, and signals
the onset of short range antiferromagnetic order. With doping
the peak shifts to lower temperatures, i.e., the doping slows

down the growth of antiferromagnetic correlations, and
eventually disappears. Only for n=0.9 and 0.95 do our NLC
results exhibit signals of a peak in �.

In what follows we compare NLC results for the uniform
susceptibility with the ones obtained using HTE �13�. We
first contrast, in Fig. 8, the results of the NLC bare sums �3�
for the bond and site expansions with those obtained for the
HTE bare sums up to order 10. Figure 8 shows that the direct
NLC sums converge down to T / t�0.75 �with the site expan-
sion being slightly better than the bond expansion�, while the
HTE results are only well converged to T / t�1.25. The ex-
istence of this region of temperatures where NLC converges
while HTE does not was our main motivation for developing
NLC, and makes NLC a more controlled technique at inter-
mediate temperatures.

As discussed before, an important feature of NLC and
HTE is that both approaches allow for systematic extrapola-
tions that accelerate the convergence of NLC and enable go-
ing beyond the radius of convergence of HTE. In Fig. 9 we
compare Pade extrapolations for � with Wynn extrapolations
for the NLC site expansion. The agreement between these
two approaches is remarkable down to T / t�0.5, which show
that indeed extrapolations can work quite well for both tech-
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FIG. 6. �Color online� Entropy as a function of temperature for
different densities �from top to bottom at T / t=1.5 NLC results cor-
respond to n=0.7, 0.8, 0.9, and 1.0� and J / t=0.3. Our Wynn ex-
trapolations after four cycles of improvement are compared with
FTLM results by JP �8�.
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FIG. 7. �Color online� Uniform susceptibility as a function of
the temperature for different densities �from bottom to top for the
highest temperatures n=0.8,0.85, . . . ,1.0� and J / t=0.5. For each
value of the density we have plotted results of Wynn extrapolations
after three and four cycles of improvement.
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FIG. 8. �Color online� Uniform susceptibility results for the bare
NLC sums of the bond and site expansions compared with those
obtained with HTE up to order 10. The density in the system is n
=0.85.
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FIG. 9. �Color online� Pade approximants for the uniform sus-
ceptibility �13� are compared with Wynn extrapolations of the NLC
site expansion. In the legend, Pade m, Pade u, and Pade l, indicate
the mean estimated value, upper, and lower limits, respectively,
obtained by different Pade approximants. The density in the system
is n=0.85.
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niques, if the temperature is not too low. For this quantity,
however, different Wynn extrapolations converge to lower
temperatures than the Pade approximants. We find this to be
remarkable for itinerant models because the analytic struc-
ture of HTE allows for an analytic inversion of the grand-
canonical �� ,T� dependence into the more experimentally
relevant one �n ,T�. Within NLC we have to perform a nu-
merical extrapolation to access lower temperatures and then
do a numerical inversion �� ,T�→ �n ,T�. Still, the fact that
NLC contains exact information from the finite clusters at all
temperatures, while in HTE only a power series expansion in
inverse temperature is kept, means that the former, in a real
sense, requires less extrapolation.

V. SPECIFIC HEAT

In this section we analyze the NLC results for the specific
heat and compare them with those obtained within FTLM
�8�. The specific heat is defined as

Cv = T� �S

�T
	

Ne

. �10�

However, we avoid the numerical differentiation of the en-
tropy with respect to the temperature by evaluating

Cv =
�H2� − �H�2

NT2 −
1

NT
� �Ne

��
	

T

� ��H�

�Ne
	

T
�2

, �11�

which substantially reduces the numerical errors as the NLC
sums for the number of particles �Ne= ��ini�� and the energy
��H�� converge �and are better behaved� to lower tempera-
tures than the ones of the entropy. Still, we have to perform
numerical derivatives in addition to calculating the fluctua-
tions of the energy ��H2�− �H�2�. Hence, of the thermody-
namic observables analyzed so far Cv is the most difficult for
NLC evaluation.

In Fig. 10 we plot the specific heat as a function of the
temperature for different densities. For Cv we only obtain
well converged results below T / t=0.5 for the Heisenberg
model and the t-J model at low hole concentration. Figure 10

shows that the maximum in the specific heat, attributed to the
thermal activation of the spin degrees of freedom, becomes
strongly suppressed with doping. This can be better seen in
Fig. 11, where we have plotted the specific heat as a function
of the hole density for fixed values of the temperature. For
the lowest temperatures in that figure, we only can follow the
Cv curves for doping below 0.15. They clearly show that Cv
decreases as the doping is increased, and exhibits a minimum
that moves towards higher doping concentrations as the tem-
perature is lowered.

In Ref. �2� we have argued that the specific heat of the
Heisenberg model suffers from large finite size effects at
relatively high temperatures. �We presented results for the
full diagonalization of a 4�4 lattice.� In Fig. 12 we compare
our NLC results for the t-J model with the ones obtained by
JP for clusters with 20 lattice sites and J / t=0.3. At high
temperatures T / t�0.75 our NLC results are in very good
agreement with the ones of JP. NLC results for Cv, however,
do not converge below T=0.5 when the doping in the system
is large. As the density approaches 1, and the convergence of
NLC moves to lower temperatures, our linked-cluster results
start to depart from the ones obtained with FTLM. In gen-
eral, we find our calculation of the specific heat in the ther-
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FIG. 10. �Color online� Specific heat as a function of the tem-
perature for different densities �from top to bottom n
=0.7,0.75, . . . ,1.0� and J / t=0.5. For each value of the density we
have plotted results of Wynn extrapolations after three and four
cycles of improvement.
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FIG. 11. �Color online� Specific heat as a function of the hole
density for different temperatures �from top to bottom n
=0.5,0.55, . . . ,1.0� and J / t=0.5. For each value of the temperature
we have plotted results of Wynn extrapolations after three and four
cycles of improvement.
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FIG. 12. �Color online� Specific heat as a function of
the temperature for different densities �from top to bottom
n=0.7,0.75, . . . ,1.0� and J / t=0.3. Our Wynn extrapolations after
four cycles of improvement are compared with FTLM results by
JP �8�.
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modynamic limit to be below the FTLM results for finite
clusters. This deviation becomes particularly large for the
Heisenberg model. The FTLM peak for Cv when N=20 oc-
curs at larger temperatures than the one obtained within
NLC. Interestingly, increasing the system size up to N=26
does not help since the peak remains at the same position
while becoming higher �8�, instead of moving to lower tem-
peratures and becoming smaller as has been found to be the
case in the thermodynamic limit �2,20�. This suggests that in
general, specific heat is a more difficult quantity to calculate
numerically.

VI. CONCLUSIONS

We have presented an application of the recently intro-
duced NLC approach to itinerant models. In particular, we
have studied thermodynamic properties of the t-J model on
the square lattice.

From the possible NLC expansions discussed in Ref. �2�,
we have found that the one best suited to the t-J model on
the square lattice is the site based expansion. For this expan-
sion we have shown that the NLC bare sums �for the observ-
ables considered here� converge to lower temperatures than
the bare HTE sums. In addition, Wynn extrapolations for the
site based expansion were found to provide better results at
lower temperatures than the ones obtained with Pade ex-
trapolations for HTE. This in spite of the fact that the inver-
sion of the dependence �� ,T� to �n ,T� can be done analyti-
cally within HTE, while within NLC it is done numerically.

Through a comparison with results obtained by Jaklič and
Prelovšek using the finite-temperature Lanczos method
�8,11�, we have also shown that NLC allows one to access
regions at low temperatures where finite size effects are rel-
evant to exact diagonalization studies. One particularly strik-
ing example presented here is the peak in the specific heat of
the Heisenberg model. In the calculations done in Refs.
�8,11� it was found that with increasing the system size
�within the sizes that can be addressed by exact diagonaliza-
tion� the peak does not move while it does increase in size.
NLC results, which confirmed previous results by Bernu and
Misguich �20�, exhibit a smaller peak shifted towards lower
temperatures.

Moving away from Heisenberg models, it remains to be
seen as to which method is in general accurate to lower tem-
peratures. Future application of NLC to superconducting and
other exotic susceptibilities should prove informative. The
study of the former using HTE remains controversial
�21–23�. It may also prove useful to combine NLC with
Lanczos and FTLM methods to extend it to still lower
temperatures.
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